5 research outputs found

    A hybrid unsupervised approach toward EEG epileptic spikes detection

    Get PDF
    Epileptic spikes are complementary sources of information in EEG to diagnose and localize the origin of epilepsy. However, not only is visual inspection of EEG labor intensive, time consuming, and prone to human error, but it also needs long-term training to acquire the level of skill required for identifying epileptic discharges. Therefore, computer-aided approaches were employed for the purpose of saving time and increasing the detection and source localization accuracy. One of the most important artifacts that may be confused as an epileptic spike, due to morphological resemblance, is eye blink. Only a few studies consider removal of this artifact prior to detection, and most of them used either visual inspection or computer-aided approaches, which need expert supervision. Consequently, in this paper, an unsupervised and EEG-based system with embedded eye blink artifact remover is developed to detect epileptic spikes. The proposed system includes three stages: eye blink artifact removal, feature extraction, and classification. Wavelet transform was employed for both artifact removal and feature extraction steps, and adaptive neuro-fuzzy inference system for classification purpose. The proposed method is verified using a publicly available EEG dataset. The results show the efficiency of this algorithm in detecting epileptic spikes using low-resolution EEG with least computational complexity, highest sensitivity, and lesser human interaction compared to similar studies. Moreover, since epileptic spike detection is a vital component of epilepsy source localization, therefore this algorithm can be utilized for EEG-based pre-surgical evaluation of epilepsy

    Cochlear implantation in children with labyrinthitis ossificans

    Get PDF
    Evidence of ossification was previously considered a relative contraindication to cochlear implantation. It was considered difficult or impossible to achieve safe electrode insertion because of bony obstruction. Either the electrodes or the inner ear structures could be damaged. Moreover, obstructed scala tympani could limit the number of electrodes that can be inserted. The efficacy of the electrical stimulation was also questioned, as a higher current would be needed on an ossified cochlea. Finally, the neural survival in ossified cochlea is unknown. This may complicate the surgical procedure and affect the long-term outcome. However, depending on the experience of the surgeon, cochlear implantation has been attempted even in grossly ossified cochlea. Here we illustrate that cochlear implantation is safe in labyrinthitis ossifican

    New Entropy-Based Method for Gene Selection

    No full text
    corecore